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SECTION 1 r
INTRODUCTION

1.1 PROGRAM DESCRIPTION

Dome polarization characteristics have previously been studied by

1

others', but only in the context of narrow-band radar. Investigation was made

R A

: of the effects of array scan for various scan expansion factors K, with primary
attention directed to the polarization transfer characteristics of the dome for ?
linearly polarized plane waves. The study concluded with an outline of feed

networks suitable for generating diverse polarizations, presenting loss budgets

and relative costs for particular networks.

! When dome configurations are considered for other applications, it
is necessary to understand their polarization characteristics more fully. 1In

particular, functions such as ESM, ECM, and communications required wider bands

than the usual radar requirements studies by Sperry. The implementation of polar- i
ization agility using multibeam feed arrays requires consideration of the following
i factors:
l. Both the dome cond teed array must contain element types |
capiable ol covering octave or greater bandwidths.  This
forces electrically dense arrays in the lower halt of the
band. Special attention must be given to the tight element '
coupling in both the feed array and dome. i
2. The feed and polarization networks must be wide band. .l
Y
1 3. Polarization interactions between the feed array and dome ;
must be reexamined in the context of large bandwidth and ;
high element density. i
4. Rapid polarization agility is imperative in the EW context, ‘ f
and represents an important topic for study. -y
iy

I “Dome Antenna, Phase LI Final Report,” Sperry Gyruscope Division,
Great Neck, NY, Nov. 1972, Report No. SGD~4261-0570 (SECRET)
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1.2 3-D DOME POLARIZATION STUDIES

1.2.1 INTRODUCTION

The 3-D dome allows wide-angle scanning over regions exceeding a
hemisphere. Feed arrays for dome applications are simplest if they provide a
fixed linear polarization. However, for such feed arrays, whether flat or curved,
the polarization incident on the dome will vary with azimuth direction, resulting
in scan~dependent polarization characteristics. For example, a linecarly polarized
feed array consisting of dipole clements will provide vertical polarization tor
the plane containing the dipole axis, and horizontal polarization for the ortho-
gonal plane. For intermediate azimuth positions, the polarization will still
be linear, but rotating from vertical to horizontal and back again as azimuth
angle is varied. This situation may be circumvented by employing circular
polarization in the feed array, but this solution is restrictive and successful

only if polarization purity is maintained.

In general, system designs cmploying dome antennas require some speci-
fic polarization over the operating hemisphere. Furthermore, modern systems are
increasingly turning to polarization agility to accomplish their goals. Both
situvations require that the feed array be capable of providing multiple polariza-
tions, perhaps with high switching rates between the various polarization states.
Previous analyses have shown that the dome will transmit any incident polarization
with essentially no change. The burden of providing polarization agility is there-

fore placed on the feed array.

One technique for generating multiple polarizations employs a crossed,
linear-array element? fed with some appropriate polarization selection circuit.

Many crossed (dual) linear elements may be employed, including crossed dipoles,

2 This approach was used in one Sperry dome. See Final Technical Report,
"Hemisphere Coverage Antenna”, Contract DAAK 40-74-C-0334, Nov. 1978
(Confidential report).

A
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crossed slots, square or circular waveguide, etc. For this study, the crossed
slot was selected as representative of the polarization characteristics ot dual
linear elements in general. An analysis has been conducted, with the results
programmed for computer. Computations of polarization state over the forward
hemisphere have been conducted for the clement excited to produce right-hand
circular polarization; the analyses and computed results are presented below.
A discussion of the feed circuits capable of generating multiple polarizations

is reserved for a later section.
1.2.2 ANALYSIS

Figure 1 shows a single slot element in the xy-plane with all para-
meters indicated. The electric field amplitude pattern for a single slot in an

infinite ground plane is given by Kraus3 as:

E = cos [(n/2)(cos a)] 1)

sin a

where o is the angle between the slot axis and the ray OP to the far-field point.
Expressing the slot pattern in terms of spherical coordinates (6, ¢), ¢ '
denotes the inclination of the slot relative to ¢ = 0°, and the unit vector in

the direction of the slot axis with ¢' orientation is given by:
a] = dgcos¢' + 5;s1n¢' (2)

To represent a crossed-slot element, we required a second slot oriented 90 degrees

celative to the first. For the second slot, the unit position vector is given by:

ap = Agsing' + dycos®' ()]

3 Kraus, J.D. Antennas. llctraw-Hill Book Co., 1950, p. 358.
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Figure 1.,
The unit vector in the direction OP is given by:
R = Txsin0 cos¢ + I'f)',sin() + &,cos0.

The values of a are now given by:

i

cosa; = J] * R = sin 8 cos(¢ - ¢'), and

!
i
n

cosay = I3 - sin 8 sin(¢ - ¢').

Substitution into (1) gives:

g o= cosin/2 ¢ sin 0 cos(d =~ ¢')1, and

! \ﬂ—sin/l) cos 7 (p - ¢")

£ = cos[n/2 + sin 0 sin(¢ - ¢")].
< v 1-sin?e sin 2 (6- ¢)

Half-Wavelength Slot in XY-Plane
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Equation (6) may also be obtained from (5) by letting ¢' + ¢' + 90°.

We must now determine the components of E in the 6 and ¢ directions.
The procedure consists of finding the angle (or cosine of the angle) between the
electric field vector at the far-field point P and the 0 and ¢ directions at
that point. The direction of the electric field at a point in space is given in
principle by projecting the vectors aj and a7 (coincident with the slot) onto the
tangent plane at the point, rotating the vector Y0 degrees (polarization property
of a slot), and finding the angle between this vector and the 0 and ¢ dircections.

This is most readily accomplished by finding the components of aj, ap along the

8 and ¢ directions (inasmuch as ag and 5; are orthogonal vectors in the tangent

plane), and working with these components.

The unit vectors in the 6 and ¢ directions are:

g = axcos 8 cos ¢ + ay

o

I

cos 8 sin ¢ - sin 8 a,, and (7)
ag = -—aysin ¢ + aycos ¢. (%)

Then, the components ol ap and as in the O and p directions are:

iy % = -sin(¢$ - ¢'),

ap c ag = cos 0 C():~;(¢ - ¢v)’

cos(¢ - ¢'), and

Sl
.
o

©
[]

ay * ag = cos 9 sin(¢ - ¢').

The resultant vectors in the tangent plane are written as:

w

1 = -Ezsin(¢ - ¢') + agcos 8 cos(¢$ - ¢'), and

;2 = 5$vns(¢ - $' )+ Jgcos O sin(d - ¢').

A positive Y0-depree rotation of cach vector is required to account tor slot

polarization. This pgives:
gl' = —Kgcos B cos(¢d - ¢') - agsin(d -~ ¢"), and (9)
..'\—'3' = —Ibc()s Bosin(d — ¢') + dgeos(d = ¢'). (1)
5

o R AN A ] g e o IS a3 DR SR FIRU
. e IRGSRT =L .




iy - ey N %

The cosine of the angle between EI' and ag is: f

cos Bl = ~sin(¢ ~ ¢')

¢21n2(¢ - $') + cos? 8 cos2(¢ - ¢') (11)
While the cosine of the angle between 51, and ag becomes:

cosy = ~cos B cos( ¢ - ¢')

VC;in2(¢ - ¢') + cos? 8 cos(¢ - ¢') (12)

o~

Similarly for Sj' we have:

cosB2 = cos(¢ = ¢') , and
J1052(¢ -~ ¢') + cos? 8 sinZ(¢ - ¢") (13)
cosYZ - ~cos ¢ sin(¢ ~ §')

Jcosz(¢ - ¢') + cos? 8 sin(¢ ~ ¢") (14)
Using these results, the Eg and E¢ components of the far field are:

Eg = E} cosBy,

HU = )322 u)sﬂz,

o™
fav]
]

Ey cosyp, and
Hg') = K9 cosyp.
The total field is givea by (+i for phase quadrature between slots):
Eel = £ cosfy + iEy cosBy, and (15)
Eg = Ej cosyy] + iEp cosyy. (lo)
2
The magnitudes of Eg and H¢ are the linearly polarized field patterns ot the

crussed-slot antenna in an infinite ground plane.
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1.2.3 REPRESENTATION OF POLARIZATION STATE t

The circularly polarized field from the crossed-slot element may be
represented as the sum of two oppositely rotating, circularly polarized waves.

From Jordan and Balmain® we have:

ER = 1/2(E¢ + iEg), and an

By, = 1/2(E4 - iEp), (18)

where Ep and Ep, are right-hand and left-hand circularly polarized waves, respec-

tively. The polarization factor is defined as:

- .“r. [
Q=" o= oIt 7o (1)
EpL

where By = ApelR, £ = A eldL, so that lQl = Ag/A; and £ = £ - £,

In terms of the quantities derived previously, the field components are written

in general terms as:

Eg = Egr *+ Egy, and (20)

E¢g = E¢r * Egi, (21)

where roand {1 represent real and imaginary, respectively. The choice of plus or

ninus sign depends on the choice of right or left-hand circular polarization for

the element, !

4 Jordan, E.C., and K.G. Balmain. EKlectromagnetic Waves and Radiating Systems,
2nd ed., Prentice-ilall, 1968, pp. 459-462,
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For this iavestigation, the CP sense is arbitrary, so we choose +i for right-hand
circular. Substituting (20) and (21) into (17) and (18) and recombining terms

pives: .

ER = 1/2[(Egr = Egi) + i(lgg + Ege)], and

B, = U/20(Eg + Egy) + 1(Eg = Ege)le

Then, in the notation of Jordan and Balmain:

, . C N2 . L2 5.
Ag = 1/2 \/(“¢r TSR COVIE S TR L (22)
. . L2 2 -
AL = 1/2 \/z;¢r +Ey )T+ (L¢i Egp) s (23) ’
. _ !
[ By + Eor :
fg = tan~} -1 , and (24
| l‘:(m- — E(HJ
|
[Egi + Hoﬂ
., = tan”! —_— . (25)
}_li"‘l- - Fop
Q is then given as:
1
it ;
L '
ALL AL i
R T v BT -
A ¢ SR R
R to
1
¢
with values of A and 4 given by equations (22) through (25). The axial ratio is: !
!
[k
1 + lQI (2(‘) !
= ’ "‘
L= lql 5
n
1
¥
8 i
:i.
M
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with the tilt angle:
b= 1/2(&g-§) + mm. (27) '

The axial ratio is defined to give a value AR > 1, while ¢ is measured from the

local vertical,

i

1.2.4 RESULTS k
t

;

Cross-slot polarization computations were made, with polarization E

state presented as a function of clevation angle tor several azimuth (¢) plane f
cuts. }i
f

The vertical polarization compoaent is nearly constant as a function b

of 0, while the horizontal component varies approximately as the cosine. For f
0 = 90 degrees, the horizontal (E¢) polarization component vanishes along the !
infinite ground plane, leaving only vertical linear polarization. This behavior is

shown in Figure 2, which is fairly typical of all ¢-plane cuts. g and K¢

tield amplitudes obviously diverge greatly for large values of 0, giving rise to |

large axial ratios.
i

Axial ratio data are sumnarized in Figare 3 as a function of elevation
angle.  The curve tor ¢ = 4 degrees corresponds to the crossed=dipole data tound
in the Microwave Engineer's Handbook . Note, however, that the axial ratio in ¢
planes containing the slot axes are worse than the handbook values by as much as
2 dB.  For any fixed value of 0, the axial ratio varies between the limits indi-

cated in the figure. ]

DooSaad, Tese, ede, Microwave Fngineers flandbook, Vol. 2o Artech House, tne.,
1971, p. S0, i
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The V/H ratio is always positive, indicating that vertical polariza-

tion is dominant throughout the hemisphere.  In tact, the tilt angle (and thus i

the major axis of the polarization ellipse) ranges between +5 degrees about local
vertical as 8 and ¢ are varied. Because of this, the axial ratio and the V/i
ratlo are very nearly equal everywhere, and are exactly equal tor ¢ = 45 degrees, A

where ¢ = U degreee. This resalt also indicates that the dome polarization is now

independent ot azimath angleo  The teed array polarization ellipse is always
oriented with the major axis essentially vertical tor all values ot §, even

though the axial ratio may become very large for values ot 0 approaching 90 deprees.
A review of the data shows that, for all values of ¢, the feed array polariza-

tion is essentially circular from zenith to 0 < 60 degrees, becoming vertical tor

B> 70 to 90 degrees (the feed array groundplane).

For 8 = 0 degree and any value ot ¢, the tilt angle ¢ is not detined.
At 0 = 0 degree, the computer program provided values equal to ¢/2 which are not

signiticant,




SECTION 11
FEED ARRAY HARDWARE LNVESTLIGATION

2.1 ELEMENT TRADEOFF AND SELECTION

Feed array elements capable of providing polarization diversity over
octave-plus bandwidths otter a significant design challenge. Several existing
elements are potential candidates, and performance chardacteristics must be ex-
amined closely tor teed array geovmetries. The maintenance ot prescribed arbi-
trary polarization states will require a precise control of the element polari-
zation in the array environment., “klement polarization will be determined by
impressed excitations and element interactions in the feed array. The high
element densities in the lower portion of the band produce very tight element
coupling, which must be controlled to provide optimum performance. Analysusb
and tests of tightly coupled clemeats have previously been conducted at Raytheon
ESD tor linear arrays.

At this time, it appears that an clement capable of generating dual,
orthogonal, linear polarizations will provide best performance, FExisting clements
with a high degree ot physical and electrical symmetry appear to offer the hest
chance of compensating tor mutual coupling ettects with scane  One such dual-
polarized element which has been studied at Raytheon consis®s ot two orthogonal,
stripline-fed, tapered-notch elements.?  Another potential candidate recently
studied s a broadband, crossced-slot element; i.e., printed-stripline slot with

hal.unc(wl: symmetrical teed lines,

6 Ludwig, A.C. "Hutual Coupling, Gain and Directivity of an Array of Two
ldentical Antenns.” TEEE Trans AP=24, Nov. 1976, p. 837.

/7 Lewis, L.R., M. Fassett, and J. Hunt. "A Sroadband Stripline Array hlement. ™
1974 LEEE/AP=S International Symposium Digest, June 10-12, 1974, Atlanta, GA,
pp 335-337.
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A third candidate is the "quad-ridge” waveguide element® using cither

circular or square waveguide. Higher-order modes may limit the bandwidth with
this element to less than an octave; in addition, it will be more expensive to

fabricate. On the plus side, the quad-ridge element should limit mutual coupling

and prevent some types of surface wave modes which occur in other elements, such

as the printed notch.

An investigation of square quad-ridge waveguide elements is currently td
being conducted in a Raytheon internal development propgram.  Orthogonal, printed-
noteh elements were sclected tor experimental investigation on this program.

The bases for selection are: (1) prior work which indicates that wide-scan,

octave-bandwidth performance for dual polarizations should be possible; and (2) j
the relatively inexpensive fabrication of large arrays which would result. i

Two versions of orthogonal printed-notch elements were fabricated

and tested. The results are described below.
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CROSSED-NUTCH ARRAY fl

The stripline crossed-notceh element was sclected for hardware evalua-
tion as the most likely to meet the requirements for the 3-D Dome Feed Array.
This cholce was based on a knowledge of the scan and wide-band capabilities of
linearly polarized notch arrays, and an iadication from previous workd of suc-

cess in integrating two anotch elements orthogonal to one another to achieve the

required polarization agility.

. |
8 Chen, C.C. "Quadruple Ridge-Loaded Circalar Waveguide Phased Arrays,’ \
IEEE Trans, Vol AP-22, May 1974, pp 481-483. f
9 Lawrence, R.L., and J. Pozgay. "Broadband Antenna Study,”™ Report AF CRL-TR- i
75-01 78. Raytheon Co., Bedford, MA, March 1975,
Honser, Gade, al. "Closely Spaced Orthogonal bipole Array,” U.S. Patent
31,836,976, 17 Sep. 1974,




Two orientation configurations ot the orthogonal notches were pur-
sued in parallel within the developmental ettort on this project. These were
the noncoincident-crossed-notch (NCN) geometry, and the coincident-crossed-notch

(CCN) geometry. The two configurations are shown in Figure 4.

Fifteen-element linear arrays in both the NCN and CCN geometries
were fabricated and tested. Both arrays were designed to have intra-clement
spacing of 0.5 X at 8.5 GHz. Both element configurations developed here can

aperate in a two-dimensional array peometry.,

The CCN array has the advantage of coincident phase centers, resulting
from physical centering of the orthogonal elements in the same place. For a linear
array, this geometry is symmetrical, and lends itself to symmetrical patterns. The
NCN array has a possibility of greater electrical independence between the verti-
cally polarized (VP) and horizontally polarized (HP) elements, resulting from the
greater physical separation between the two. This could result in improved per-

formance for the NCN array.

Each array has about an octave bandwidth over which its performance
is satisfactory == 4.5 to 9.25 GHz for the 195-clement  NCN array, and 3.7% to /7.5
GHz for the 15-element CCN array. The estimated directivity tor the CCN array

element 1s shown in Figure 5.

2.3 LINEAR NOTCH ARRAY

The first step taken in the hardware generation was the fabrication
of a l5-element, horizontally polarized, linear-notch array. Figure 6 is a photo-
praph of the array. The element design tollowed the puidelines of retference 1.
Figure 7 details the peometry ot the arrave A S0-ohm stripline feed {s tapered to
67 ohms at the noteh teed point. The printed-circuit substrate is buroid 5880,
which has a dielectric constant ot .22, The stripline dielectric thlckness is

1.120 inch.
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The array pertormance was optimized over the 3.0 to 9.25-CGllz frequency
band. All data included here were taken on the center array element. Represent-
ative azimuth imbedded element patterns are shown in Figure 8. The azimuth 3-dB
beamwidth is equal to or greater than 110 degrees. The azimuth patterns do have
some "lumps,” and it should be noted that the 3-dB beamwidth point was sclected
at the angle at which the power is down 3 dB from broadside, and continues to he

down 3 dB for all larger aungles.

Figures 9 and 10 shown the passive VSWR and active VSWR for ¢, 40, and
o0-degree scan angles as plotted on an automatic network analyzer. Passive VSWR

is less than 2.6, and active VSWR is less than 5 out to a 6U0-degree scan.

The test array was fabricated with an adjustable ground-planc spacing

which was optimized at a distance of U.8 inch from the antenna face.

The elevation patterns and measured gain of this array are of interest
in establishing the estimated gain of the dual-polarized array. 1In its present
configuration, it does not truly reflect the two~dimensional array geometry. The
elevation patterns shown in Figure 1l are quite regular, as would be expected from
vertical trough stripline elements. Measured gain of the horizontally polarized

linear array is shown in Figure 12.
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Figure 8. Representative Embedded~Element
Azimuth Pattern (Sheet 1 of 4)
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Figure 8.

Representative Embedded-tlement
)

Azimath Pattern (Sheet
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Figure 8. Representative Embedded-Element
Azimuth Pattern (Sheet 3 of 4)
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“igure 8.

Representative Embedded-Element
Azimuth Pattern (Sheet 4 of 4)
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Polarized Linear Array (Sheet 1 of 4)
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Elevation Pattern of Horizontally
Polarized Linear Array (Sheet 2 of 4)
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2.4 NONCOINCIDENT-CROSSED-NOTCH (NCN) ARRAY

Vertical elements were next placed between the horizontal elements !
to achieve the NCN configuration. Figure 13 is a picture of the completed array.
The vertically polarized (VP) element design was identical to that of the hori-~
zontally polarized (HP) element design (Figure 7), which is a desirable feature

for extension to a two—~dimensional array. 1

Embedded element patterns and gain and impedance measurements were

taken every 0.25 GHz from 3.0 to 9.25 GHz. These data suggest that the array
performance is good in the 4.5 to 9.25-GHz frequency band over the scan volumes

cited below.

14571

Figure 13, Photograph of Noncoincident-
Crossed-Notch (NCN) Array
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Figures 14 and 15 show plots of active VSWR at 0, 40, and 60-degree
scan on the center VP and HP elements as measured on the automatic network
analyzer. Over the 4.5 to 9.25-Gllz band, passive VSWR is under 2.75:1 for both
polarizations and all frequencies, and active VSWR on the VP element is under
3.7:1 out to 40 degrees and under 5.25:1 out to 60 degrees. The active match on

the HP element is under 3.35:1 out to 60 degrees.

Selected embedded element patterns over the 4.5 to 9.0-GHz band are

shown in Figures 16 and 17, respectively, for the center HP and VP elements.

Pattern measurements were made to test the polarization isolation
of the VP element to HP incident radiation, and vice versa. Figures 18 and 19
give some representative measurements. The VP isolation of the HP element
(Figure 18) is 20 dB minimum broadside, and degrades at the low frequencies.
[solation is better at the higher frequencies. HP isolation of the VP element
(Figure 19) is 23 dB minimum broadside, and again degrades at the lower frequen-
cies. [Isolation improves at the higher frequencies for the VP element, also.
This poor isolation at the low frequencies stems in part from the asymmetry of

the NCN array.
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Fipure 18, Cross=Polarization (HV) Patterns ot
NCN Array Element (Sheet 1ot 2) '
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Fipure 19, Cross-Polarization (VH) Patterns ot
NCSOArray Element (Sheet oot )
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]

COINCIDENT-CROSSED~NOTCH ARRAY (CCN)

to
»

The CCN geometry requires a stripline board thickness smaller than
the notch gap at its feed point, in order that the vertical and horizontal
clements might remain independent. A DL060=-Tnch thick stripline NP noteh v ac
with a 0.090-inch noteh teed gap was desipgned and tabricated to meet this re-

quirement.

The VP elements were then fabricated and configured with the HP
elements as depicted in Figure 20. The vertical boards contain three vertically
polarized elements, only one of which is actively fed, the other two being used
for impedance matching to free space. The vertical and horizontal element designs
are identical, except that the stripline feeds are offset to keep the feeds from
physically intersecting and interfering clectrically. Figure 21 is a picture of

the completed array.

Lmbedded element patterns and pain and impedance measurements were
taken every 0.25 GHz from 3.25 to 9.25 GHz. 1t can be concluaded that, except
for a rise in the active impedance at around ¢ GHz for both the VP and HP clements,
array performance is good over the 3.75 to 7.5 GHz frequency band. ALl the tollow-
ing statements pertain to embedded element measurements over this 3.75 to 7.9 oHz

frequency band on the center VP oand HP clements.

Figures 22 through 25 show passive and active VSWR as measured on the
automatic network analyzer. The VP clement has a passive VSWR under 3.5:1, and
under 2:1 over most of the band.  The VP clement active VSWR is under 4.5%:1 out

exceept tor a rise to 7:1 tor a O-degree scan at 4 Gz, and a rise

to bl degrees,
to 6b:1 for a 40-depree scan at 7.9 GHz,  The rise at 4 GHz is related to the rise
in passive VSWR. The HP active mateli is 4.9:1 out to a db-degree scan over 4.5

to 7.5 GHz. At 4.2% GHz, VSWR comes up to 6.5, and at 7.5 Gllz there is o rise in

VSWR to L0:l for a dll=degree scan.
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Figure 20. Coincident Vertical Element Geometry
(15-Element, Dual-Polarized Notch Array)
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Figure 21. Photograph of Coincident-Center Notch Array
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Figure 25. Active VSWR of Vertically Polarized
CCIv Array (Sheet 1 of )
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Embedded element patterns ol the center clements are shown in Fipures
26 and 27. Minimum 3 dB-beamwidths over the band arce 74 degrees in azimuth and

91 deerees in elevation lor the HP element, and VS depgrees in azimath oand 49

s i

deprees in elevation for the VP oelement,

Figures 28 and 29 show pattern measurcvments taken to test the polari-
zation isolation of the VP element to HP incident radiation, and vice versa.
The VP clement isolation to HP radiation is >14 dB over a +60 depree scan in

azimuth, while HP element isolation over a +60 degree scan is >13 dB.

Phase measurements comparing the VP element phase center to the
HI* olement phase center were taken, and are shown in Figure 30, These pive an

indication of how dil'terences between locations of the VP oand HP element phase

centers would atfect the quality of polarized radiation which could be pencrated o

over the frequency band and azimuth scan. ' ]

The graphs should be compared for differences between the VP oand HP &

phase, and not for absolute values, which were adjusted during the tests.

The phase tests were conducted in the following manner. The array
tace was positioned as accurately as possible over the pedestal center of rota-
tion (CR). At a single frequency, a phase pattern was cut over +90 depgrees in i
azimuth on the center VP clement with a VP transmit horn.  The transmit horn was
then rocated to 1P, and o phase pattern cut on the center HP element on the same

araph, asing the same cable between the phase receiver and the antenna element.,
The phase measurements also indicate that, over a +60 degree scan,

the VP oand HP element phase centers were at tne arrav face (location ol the CR).

This is indicated by the flatness of phase over the scan.
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4.75 GHZ

Figure 20 Azimuth Pattern ot Vertically Polarized
CCN Array (sheet 2 ot &)
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Figure 26.

Azimuth Pattern ot Vertically Polarized
CCN Array (Sheet 3 ot 4)
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7.25 GHZ

Figure 28, Cross-Polarization (HV) Palterns ot
CON AYTray Vlement (Sheet 2 oop )
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5.25 GHZ

Figure 29, Cross-Polarization (VH) Patterns of
CON Array BElemeat (Sheet 1 oot 2)
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2.0 ESTIMATED GAIN

Actual pain measurements of the present NCN and CCN arravs would be

of little use, due to the presence of only three vertical elements. Consequently

such data are not presented.,

However, estimated directivity of the NCN and CCN elements in g two-
dimensional array cavivonment can be derived {rom a comparison between pain and
patterns of the HP linear array, which had very regular patterns, and the HP and

VP ombedded-clement patterns of the NCN and CCN arrays.

A summary ol beamwidth appears in Table 1. Notice that, over the 4
to 8-GHz band, the combined beamwidths of the HP linecar array and CCH dual-polar-

ization array are in close agreement. Thus one would expect the directivity ot

the CCH array to closely agree with the directivity of the HP linear elewment

(Figure 12).  Element gain may be less in spots, due to VSWR mismatches.

For the NCN array, the VP beamwidth at 5, 6, and 7 Gllz is substan-—
tially less than the elevation beamwidth of the HP linear array. Conscquaently,
one would expect improved gain at 5, b, and 7 GHz by about 4, 1.5, and 1 d%,
respectively. However, the reduced beamwidth is a significant problem tor a

wide-scan array.

2.7 PATTERN NULLS IN CROSSED-NOTCH ANTENNAS

The printed-noteh celement has thus far been tound unsuitable tor

nulti-octave, wide—angle scanning in array applications, bhecause ol unexplained
pattern nulls at angles smaller than those computed by prating lobe criteria.

A model for a possible explanation resulting trom excitation of a4 surtace wave
tollows, The trequency of such a pattern null is predicted here, bat the o trensoth

ot the coupling and subsequent depth ot the nall are not considered,




The crossed-notch array over a4 pround plane torms a corrupgated, reac-
tive structure (Figure 31) which is capable of supporting a pguided surtace wave.
For excitation of the notch clements in the x-z plane (horizontal elements), the
polarization is horizontal. This polarization is suitable to couple to a T-i
surface wave propagating in the x direction. The governing relation for the sur-

face wave propagation vector in the x direction, ky, is:

[ U P

- o2 _ 2 L2 D
ke o=k, [l + tan (kut)], (28)
2m - . ] 10
where k‘) = 20 = free-space propagation vector, and t=gpround-plane depth, .
Ao
TABLE 1. BEAMWIDTH COMPARISON
[ | Bcamwidtﬁgﬁbgrcgg“
| Frequency (GHz) | 3 { 5 6 7 8 9
l ! |
| Azimuth Beamwidth |
I | {
| HP Array | 160 159 15% 11 120 125 123 |
| NCN Array I 95 90) 100 134 139 1¢3 157 |
[ CCN Array [ 97 128 97 130 128 - [
| | |
| Elevation Beamwidth |
| | |
| HP Array | 9 93 Yy 120 133 1 4) 1 4i |
J NCN Array | - - 53 10 90 17 120 |
i COCN Array | ~ 1 ¢4 11h 133 Lo 1 - |
| { J

10 Harrington. “Time armonic Hlectromapnetic Fields.” Mecraw=Nitl, 1961, p 1/1.
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Figure 31.  Linear Crossed-Notch Array Geometry
For array scanning at an angle 8, the coupling from all elements
to the sartace wave will add in phase tfor
21m
k., = kK sin o+ -0 Co
X 0 d
m ot L, Sa..,
where d = clement spacing.  Solving equations (28) and (29) tor o, we have:
Do 2
k” sin 9+ vy + L+ tan™ (k t)
(Al
d
. I Jom
S o= -
sin + L o (L\ 1) od { hr)
(8] ) o i
A
'

MO
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For a fixed geometry (t, d constant), we have a surface resonance E
1
and pattern null at an angle 8 for kg,, such that:
+ 1 - 2 mm < 1 (31)
kocos (k,t) kod
Equations (30) and (31) predict nulls which are synetrical with angle,
and which move with frequency. FEquation (31) has been solved for the design para- :
meters of a l5-element linear, crossed-notch array currently being tested. The i
frequencies for pattern nulls are listed in Table 2. There are no solutions for ”
the case m = 0, The lowest-order (m = il) solutions are obtained by direct solution ;
of equation (31). Higher moding (|m|>1) predictions have been made, taking advan-
tage of the fact that the solutions converge quickly to the same value. We may
then take the limit m = « in equation (31), and note that the frequency poles tor '
!
Ll/kyeos(kyt) are the desired solutions.
TABLE 2.  PREDICTED FREQUENCIES OF PATTERN
NULLS FOR HORIZONTAL ELEMENTS*
|Ground Plane | ¥requoncy fof Nulls (di7) ]
[Depth t, Inches | Lowest-Order(m = +1)Modes | Higher-Order Modes |
| | l
| 1.4 | hel%, 6.75% ta 7.0 f 6.3 I
| [ | |
| 1.3 | 6.0 to 6,25, 7.25 to 8.5 | 6.8 i
| I I |
| 1.2 | heH to 6,75, Bl to B.Y | 7.4
| [ | I
| 1.1 | 3.0, 7.0 to 7.5 | 8.0 |
l I l |
| 1.0 | 3.9, 7.9 to 8.0 | 3.0 |
| I | l
| 0.9 | 3075, 7479 to 8.9 i 3.3 J
| ' | | ‘;
| 0.8 | 4.25, 8.0 to 8.5 | 3.7 {
e S I N
* Flement spacing d = 0,693 in., variable ground plane depth t, over
a frequency band 3.0 to 8.5 GHz.
|
1l
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SECTLION 111
MICROWAVE CIRCUITS FOR AGILE POLARLIZATLION

3.1 INTRODUCTION

The 3-D dome allows wide—angle scanning over regions exceeding a
hemisphere.s  Feed arrays tor dome applications are simplest if they provide a
tixed, linecar polarization. However, lor such fecd arvavs, whether tlar or
curved, the polarization incident on the dome will vary with azimuth Jdirection,
resulting in scan-dependent polarization characteristics. For example, o linecarly
polarized feed array consisting of dipole elements will provide vertical polari-
zation for the plane containing the dipole axis, and horizontal polarization tor
the orthogonal plane. For intermediate azimuth positions, the polarization will
still be linear, but rotating from vertical to horizontal and back again, as azi-
muth angle is varied. This situation may be circumvented by employing circular
polarization in the teed array, but this solution is restrictive and successtul

only if polarization purity is maintained.

[n peneral, system designs employing dome antennas require some spe-
citic polarization over the operating hemisphere.  In addition, modern svstens
are increasingly turning to polarization agility to accomplish thelr goals. Both
situations require that the feed array be capable of providing multiple polariza-
tions, perhaps with high switching rates between the various polarization states,

Pervisou analyses have shown that the dome will transmit any incident polarization

with essentially no change.  The burden of providing polarization agility is there-

tore placed on the teed array.
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One technique for generating polarizations cmploys a croussed, linear- |

i2a

array element fed with some appropriate polarization selection circuit. lMany
crossed (dual) linear elements may be employed including crossed dipoles, croussed
slots, square ur circular waveguide, etce, Referencell describes the polarization

characteristics tor such dual linear elements, using the crossed slot as an example.

While the radiating characteristics of the element are important,
I the characteristics of the element feed network are equally important in estab- Lo

lishing overall antenna performance. Many types of polarization selection cir-~ \

cuits are possible, the choice depending on the number of polarizations states
desired, the amount of loss which may be tolerated, and the speed required to go
from state to state., This discussion addresses three specific feed array polar- :

ization requirements:

l. "Rotatable linear polarization,” for which the tilt angle may '

be "continuously” varied over a l80-degree range; this capa-
bility allows the polarization external to the dome to remain

fixed as a function of scan (azimuth) angle.

2. "Selectable polarization,” which allows the feed array polar-
ization to bhe chosen from among a limited number of tixed
states; all of these circuits provide at least one pair of
orthogonal polarization states, and the selection ot states

can be made in a random manner.

3. "Completely arbitrary polarization,” which allows the selection
of any polarization state; this capability requires the preatest

complexity in the polarization selection circuit.

Il Holst, DJW. "Cross Slot Polarization Characteristios Over Hem sphered”
Raytheon memo 9282/0WH/O71, 23 Foeb, 1979,
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The following paragraphs describe the relevant circuits and some of

their operating characteristics. !

3.2 ROTATABLE LINEAR POLARIZATION

A feed circuit to provide rotatable linear polarization is presented
in Figure 32. This circuit is basically a variable power divider which splits the
power to the two crossed linear elements to achieve a polarization rotation. This
circuit consists of two 3~dB hybrids and a multi-bit phase shifter. A signal at
the input of the network is divided between the crossed linear elements in a ratio

determined by the value of the phase shifter, The ouput signals are either in

L3
phae or 180 degrees out of phase, repardless of the phase shifter setting. This :
condition is necessary to maintain a linearly polarized signal in space.

~

'
]
0° - 180°
IV, 1
90° 90°

f

H¢BRID HYBRID ] |

Figare . Variable Power-pivider Circuit to
Provide Rotatable Linear Polarization
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The polarization rotation obtained depends on the pranularity ot the
malti-bit phase shifter. There is a 2:1 relationship between the bit size and
rotation. 1t takes two deprees of phase shift to change the polarization tilt
angle by one degree. For dome operation with constant linear polartzation inde-

pendent of azimuth angle, a rotation of up to 180 degrees is required.

Analysis of the circuit of Figure 32 provides the following relations

9
for determining the polarization tilt angle, where ¢ is the phase shifter setting: ;
3
EV = i
Epy (i) +

Tilt Angle = 1 = tan_.l EV (313)

Ey
Ey = (cos ¢ -1) + isin ¢ (34)
by = sin & - i(cos ¢ +1) (39)

Results obtained from these expressions are presented in Table 3.
The consequences ot a limited number of bits noin o multi-bit phase shitter are

shown below.




|
t
}
§
TABLE 3.  ROTATABLE LINEAR CHARACTERISTICS
!
‘ [ No. of Bits, | Smallest | Polarization | Polartzation | Additional | '
‘ ] n | Bit | Rotation, 1 | Crosstalk |E | Polarization |
i ! | (Deg) | (Deg) | (dB) —1 | Losses (dB) |
i | L 1 ] B :
| | [ [ [ T l
‘ ] ] J 150 | Yo [ | w )
| 2 } 9 | 4% | ¥ | -3l |
| 3 | 45 | 2209 | -7.05 } -(1.0nY i
} 4 j 2205 | 11.25 | -14.073 | -0.17 |
| 5 | 11.25 ) 5.673 | -20.13 [ —U.04 |
I R T T D !
b e 4
| T E . —[ i r I I i _ E T ‘ *
I 5 " c[5 1 B [ 7 [E | : ‘
{ (bey) [ £y, boep) T (pey) | (Deyw) | (bey) l ‘
| o b S | f 1 R E
l [ | | ( | f '
| 180 [ = i ~ { - f - | -Y0 | J
] 179 J11a.5887 | L/ | =) | 18,0 | 59,0 |
| 1h0 3,730 | 165,00 i -15.0 i 180,00 I —/h |
| 120 [ 1.7321 oo =300 18Ut | — b |
| 90 | 1.0 fo13sa | =4v0 1800 | ~4% |
| 1) | 0.»774 1200 | =600 | 180 .0 | =30 J
| 40 P 0. 3640 | llo.o | =70.0 | 180.0 i -2 i
J 20 [ 0.1703 [ too.0 { -80.0 | 180.0 ) -10 |
| 1 | 0.0087 { Y. L =890 18U | -0.5 i
l U [ o | | | | 0 i
| -1 | u.o087 | =90.5 | =-90.5 | 3 | HL |
} -0 ] 0.1763 | =1o0.0 | -tuo.o | 1] ] +14) )
i =40 1 0.3640 | -110.0 | -110 | 0 ! +20 |
| -6U | 0.5774 | —120.0 | -120.0 | 0 | +30 |
| =90 ] 1.0 I =135.0 | =135.0 | 0 ! +47 i
{ -120 | 1.7321 bo=1s0.0 ) =100 0 | 400 )
i I =150 Vo3.2320 | =1os.0 | ~165.0 | (0 R XN !
i ) -1/9 I ra0oss? | =1/79.5 | =179.5 | 0 | +RY LD i
| - 130 | | - | - | | 9 |
! _ { | | I | }




Obvivusly the polarization rotation increment becomes finer with an
increasing number ot bits, as shown by the third column.  The last two colunng
refer to a horizontally polarized incident wave. The fourth column provides the
[Ey/Eyl ratio as given by equation (32); i.e., the signal response in tne vertical
element relative to that in the horizontal element for incident horizontal polari-
zation. This is a measure of isolation as a function of the number of bits

employed.

The last column provides the polarization loss for an element with
the indicated polarization tilt angles corresponding to the horizontally polarized
incident wave. This loss must be added to the insertion loss of the polarization

circuit. Note that, for three or more bits, the polarization loss is small.
[t should be mentioned that one additional phase shifter in the V or
Hooutpat arm ot Figure 32 is required in order to obtain any specified polariza-

tion. This phase shifter must be capable of providing 360 degrees of phase shift.

3.3 SELECTABLE POLARIZATION

The circuits shown in Figure 33 through 35 which are capable ot pro-
viding a number of fixed polarization states. Two, three, four, and six-state
circuits are indicated, with circuit complexity obviously increasing with the
number of states provided. Fach circuit provides at least one pair ot ortho-
gonal polarizations, while the four and six-state circuits provide two and three

orthogonal pairs, respectively.

Phase shifters used in these circuits are single-bit phase shitters
af the value indicated. By use ot diode phase shifters, the polarization state
may be rapidly chanped to implement system requirements, Regquired phase shitter

settings for the available states for each circuit are indicated in the figures.

8/
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Figure 33, Two=State Polarization Circuaits
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\/\/ POLARIZATION  STATES

DIAG ONAL: 1 =90°, 2 =180°
1 @ 2 RHCP: 1 -0°, 2-=130°
LHCP: 1=0°, 2=0°
9Q°
HYBRID
fA) VARIABLE PHASE SHIFTER
POLARIZATION STATES
DIAG CNAL: 1 AND 3, 2 AND 4
RHCP: 1 AND 4
LHCP: 2 AND 3
O-j 0-——1
90°| 2 3 90°| 4

EQUAL-POWER DIVIDER

!

(B) FIXED-PHASE SHIFTER

Figure 34, Threo=-State Polarization |
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POLARIZATION  STATES
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HORIZ ONTAL: 2 1o, 1t 3 4 0°
90° RHCP- 14 90°,2 3 0
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90°
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4 (A} FOUR-STATE CIRCUIT

v v POLARIZATION  STATES
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RHCP: 1°5790°,2 374 6 0¢
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90° . DS
HYBRID DIAGONAL: 1790°,2-374-5°6 0
DIAGONAL: 2 90°,4:180°,1°3 5 6 0°

Yoloh

?0¢
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\/\/L/\ J) . (B SIX-STATE CIRCUIT

Fiyure 350 Four- and Six-State Polarization Circuits
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To obtain an estimate of the insertion loss for each circuit, three
typical octave bands were considered. Table 4 gives an estimate of losses for
the individual components comprising the various circuits; i.e., hybrids, phase b
shifters, and switches. Losses are indicated for the 1 to 2, 4 to 8, and 8 to iﬁ
16-GHz octave bands. These values are representative of the state of the art
for these components and frequency ranges. Table 5 gives an estimate of the !
total loss to be expected for each circuit configuration. The indicated loss
figures do not include connecting transmission line loss, since this is a variable
which depends on specific system layout. As such, the loss values indicated in
Table 5 represent best-case values; they may be expected to increase somewhat, 1
depending on the final layout. For those circuits having phase shifters, the k,
loss is different for the on and off states. In these instances, the appropriate %

value of loss was selected for each polarization state.

. It should be noted that, due to the various combinations of on and
; off phase-shift states, there generally is an amplitude imbalance between the V

and H arms as polarization is changed. This imbalance derives from the differen-

tial loss in the two paths resulting from the selected phase-shifter settings,
and ranges between 0.2 and 1.0 dB. As a result, signal cancellation in hybrid
output arms is not complete, since amplitudes are not equal. This leads to high-
amplitude, cross-polarized components, and makes it impossible to achieve high-

purity circular polarization.

The speed with which polarization states may be changed depends on t

the speed of the phase shifters. For diode phase shifters, in-house studies

o Al 4 e

indicate switching speeds under 100 ns and power handling of about 10 watts CW 4

per circuit. Switch rates of the order of 1 MHz and greater appear reasonable.

e
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TABLE 4. TYPICAL COMPONENT LOSSES

|Component . ____Frequency Band | A
b B | 1 -2c¢lz ] 4 - 8 Gllz 8 - 16 Gz | ;
| I | I
| | | | |
190° Hybrid | 0.25 dB | 0.4 dB | 1.2 dB |
| | | | |
|180° Hybrid | 0.5 dB | 0.6 dB | 1.3 dB |
| | | | | :
J1 x 2 Switch | 1.0 dB | 1.5 dB | 2.2 dB | 4
| | | | I i
]180° Phase Shifter | 0.75 dB | 1.0 dB | 1.4 dB | 2
|(off state) | (0.5 dB) ! (0.6 dB) | (0.9 dB) | :
| | | | | |
190° Phase Shifter | 0.8 dB | 1.1 dB [ 1.9 dB |
| (off state) | (0.5 dB) I (0.7 dB) | (1.0 dB) |

| | | I
}45° Phase Shifter | 0.9 dB | 1.2 dB | l.6 dB |
|(off state) | (0.6 dB) I (0.8 dB) | (1.1 dB) |

I | | I
|22-1/2° Phase Shifter | 1.0 dB | 1.3 dB | 1.8 dB |
| (off state) | (0.6 dB) | (0.9 dB) I (1.2 dB) | .
I | | | I
{ 3-dB Power Divider { 0.3 d8 | 0.7 dB ' 0.9 dB ]

| | I |
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TABLE 5.

SUMMARY OF POLARIZATION CIRCULT LOSSES
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3.4 COMPLETELY ARBITRARY POLARIZATION

As mentioned previously, arbitrary polarization may be obtained using
the circuit of Figure 32 with the addition of a 360-degree phase shifter in either
the V or H output arm. The purity of all polarization states is a function of the
amplitude and phase balance achieved in the two output arms. Studies regarding
the necessary balances for rotatable linear polarization are described in refer-
encel?, Similar conclusions are obtained when considering arbitrary polarization

states of specified purity.

The circuit of Figure 32 is repeated in Figure 36(A), with the addi-
tional 360-degree phase shifter on one output arm. This circuit may be configured
into a more balanced structure, as shown in Figure 36(B). Phase shifters have
been placed in both arms, and the total required phase shift per device has been
reduced by one-half. Amplitude and phase tracking between output arms should be
much improved, limited only by the tracking of the individual components. Losses
for this circuit depend on the number of bits employed in each phase shifter, and

can be as high as 8 to 10 dB.

3.5 CONCLUSIONS

Microwave circuits may be configured to provide diverse polarizations
from array antennas. However, circuit complexity, cost, and insertion loss in-
crease rapidly with the number of polarization states to be provided. It is most
important to specify polarization requirements carefully to minimize impact on

overall system performance.

12 Maybell, M.J., and Miller, M.D. "A Linearly Polarized Antenna with an
Electronically Agile Polarization Tilt Angle.” Raytheon ESD, 20 Mar. 1979.
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00 - 900

90°
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I
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0° - 180°

() BALANCED CONFIGURATION

Figure 36.

Completely Arbitrary Polarization
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SECTION 1V
SUMMARY

4.1 PROGRESS MADKE

The operational requirements of the 3-D dome antenna were investi-
gated to establish the polarization performance required of the feed array
portion. A trade study was conducted to identify potential candidates for
octave-bandwidth, dual-polarization elements and the accompanying polarization

sensing and agility circuits which meet the required performance.

A typical crossed-slot element was studied to determine its polari-
zation performance over hemispherical coverage. The results show essentially
circular polarization for 0 < 6 < 60 degrees (less than 6-dB axial ratio). The
crossed-notch element was then studied to determine its suitability for broad-
band performance. It was found that predicted pattern nulls would exist at fre-
quencies spaced greater than one octave apart. Thus, the crossed-notch design
can serve as an octave-bandwidth approach, with no null distortions. The crossed-
notch element was selected as the best element for design, fabrication, and test.

Three test pieces were examined.

L. a linear array of crossed-notch elements,

2. noncoincident-crossed-notch (NCN) array, and

3. coincident-crossed-notch (CCN) array.

Tests on these three pieces indicate that:

1. the beamwidth of each is adequate for internal illumination of

the dome surface over the octave bandwidth (Table 1);

e ==




2.

3.

VP to HP isolation is greater than 20 dB for the NCN
design;

VSWR is smooth enough over an octave bandwidth to provide
adequate uniformity of illumination over the dome (the
variation of VSWR with scan angle and frequency is a
concern which should be addressed to widen the bandwidth);

and

although the CCN has a broader beamwidth in one polarization,
the NCN is favored because beamwidths of orthogonal polari-
zations more closely aree, making the element more independent
of orientation (if the current deeper dome design is used,

a slightly narrower element beamwidth can be tolerated, and

the NCN design can offer more gain).

Polarization agility circuits were examined to determine the most

suitable approach for the chosen element feed. As could be expected, granular-

ity in polarization-setting ability can be traded off against loss, cost, and

complexity.

4.2 CONCLUSIONS

Use of a deeper-than-hemispherical dome, such as a prolate spheroid,

reduces the scan-angle requirement of the feed array elements. This leads to two

improvements:

1.

Feed Array VSWR variation over an octave bandwidth is

greatly reduced for scan angles less than 40 degrees.

Dome [llumination is less sensitive to variations in element

pattern beyond a 45-degree scan angle.
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Although computer-control led circuits are used in the agile polari-
zation concept desceribed tn this report, the complexity of beam steering and
shaping control, multiplied by that of the polarization agility control, would _;
represent a great increase in complexity over current, simpler phase-shifted
array controls. It is believed that the lens-fed array approach is simpler and
more promising than the totally clectronic steering approach for the dome feed,

especially for wide-band and multiple-beam applications.

4.3 RECOMMENDATIONS

The arcay celements examined were proven to be adequate for octave
bandwidth performance. [t is felt that other elements, such as the quad=ridyge 4
guide, should be examined for use in order to avoid the pattern nulls inherent
in the crossed-notch approach, improve VSWR characteristics, and permit wider-

band operation.

Careful thought should be given to tradeoff of depolarization losses
associated with circularly polarized elements in linearly polarized radiaticn com-
pared to the RF losses associated with the circuit necessary for agile polariza-
tion. Hardware development of agile polarization circuits and/or concepts is

necessary to establish feasibility and performance characteristics.
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